5.5 The Substitution Rule/61: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:




New upper limit: <math>\27 = 1+2(13)</math><br>
New upper limit: <math>27 = 1+2(13)</math><br>
New lower limit: <math>1 = 1+2(0)</math>
New lower limit: <math>1 = 1+2(0)</math>
   
   
Line 34: Line 34:


\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex]
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex]
&= \int_{1}^{27}  \int_{1}^{27}\frac{1}{\sqrt[3]{(1+2x)^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \int_{1}^{27}\frac{1}{\sqrt[3]{(1+2x)^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]

Revision as of 04:01, 22 September 2022

= = = = = = = = = \\[2ex]



New upper limit:
New lower limit: