5.5 The Substitution Rule/61: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 24: Line 24:
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex]
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex]
&= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex]
&= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex]
&= \frac{1}{2}\frac{{u}^{1/3}}{3}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\frac{{u}^{1/3}}{\frac{1}{3}}\bigg|_{1}^{27} = \frac{3}{2}{u}^{1/3}\bigg|_{1}^{27}\\[2ex]
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]
&= 0
&= 0

Revision as of 04:16, 22 September 2022



New upper limit:
New lower limit: