5.5 The Substitution Rule/61: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{0}^{13}\frac{ | \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx | ||
</math> | </math> | ||
Line 26: | Line 15: | ||
New upper limit: <math> | New upper limit: <math>27 = 1+2(13)</math><br> | ||
New lower limit: <math> | New lower limit: <math>1 = 1+2(0)</math> | ||
Line 33: | Line 22: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{13}\frac{ | \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex] | ||
&= \int_{ | &= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] | ||
&= \frac{1}{2}\ | &= \frac{1}{2}\frac{{u}^{1/3}}{\frac{1}{3}}\bigg|_{1}^{27} = \frac{3}{2}{u}^{1/3}\bigg|_{1}^{27}\\[2ex] | ||
&= \frac{ | &= \frac{3}{2}{(27)}^{1/3} - \frac{3}{2}{(1)}^{1/3} \\[2ex] | ||
&= | &= \frac{9}{2}-\frac{3}{2}\\[2ex] | ||
&= 3 | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 04:20, 22 September 2022
New upper limit:
New lower limit: