5.4 Indefinite Integrals and the Net Change Theorem/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 4: Line 4:




\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx
\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx \\[2ex]
 
&= \left(\frac{3x^{\frac{7}{3}}}{7}+\frac{4x^{\frac{9}{4}}}{9}\right)\Bigg|_{0}^{1} \\[2ex]
 
&= \frac{3}{7}+\frac{4}{9} = \frac{27+28}{7\cdot9} = \frac{55}{63}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:07, 22 September 2022