5.4 Indefinite Integrals and the Net Change Theorem/31: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 6: | Line 6: | ||
\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx \\[2ex] | \int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx \\[2ex] | ||
&= \left(\frac{3x^{\frac{7}{3}}}{7}+\frac{4x^{\frac{9}{4}}}{9}\right)\ | &= \left(\frac{3x^{\frac{7}{3}}}{7}+\frac{4x^{\frac{9}{4}}}{9}\right)\Bigg|_{0}^{1} \\[2ex] | ||
&= \frac{3}{7}+\frac{4}{9} = \frac{27+28}{7 | &= \frac{3}{7}+\frac{4}{9} = \frac{27+28}{7\cdot9} = \frac{55}{63} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:07, 22 September 2022