5.5 The Substitution Rule/5: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
du &=-\sin{(\theta)}d{(\theta)} \\[2ex] | du &=-\sin{(\theta)}d{(\theta)} \\[2ex] | ||
-du &=\sin{(\theta)}d{(\theta)} | -du &=\sin{(\theta)}d{(\theta)} | ||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int \cos^{3}{(theta)}\sin{(\theta)}d{(\theta)} = \-int u^{3}du | |||
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C | |||
&= \frac{-1}{4}\cos^{4}{(\theta)} + C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 19:37, 22 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int \cos^{3}{(theta)}\sin{(\theta)}d{(\theta)} = \-int u^{3}du &= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C &= \frac{-1}{4}\cos^{4}{(\theta)} + C \end{align} }