5.5 The Substitution Rule/5: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
du &=-\sin{(\theta)}d{(\theta)} \\[2ex]
du &=-\sin{(\theta)}d{(\theta)} \\[2ex]
-du &=\sin{(\theta)}d{(\theta)}
-du &=\sin{(\theta)}d{(\theta)}
\end{align}
</math>
<math>
\begin{align}
\int \cos^{3}{(theta)}\sin{(\theta)}d{(\theta)} = \-int u^{3}du
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C
&= \frac{-1}{4}\cos^{4}{(\theta)} + C


\end{align}
\end{align}
</math>
</math>

Revision as of 19:37, 22 September 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int \cos^{3}{(theta)}\sin{(\theta)}d{(\theta)} = \-int u^{3}du &= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C &= \frac{-1}{4}\cos^{4}{(\theta)} + C \end{align} }