5.5 The Substitution Rule/5: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} &= \-int u^{3}du \\[2ex] | \int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} &= \-int u^{3}du \\[2ex] | ||
Line 25: | Line 23: | ||
</math> | </math> | ||
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C | |||
&= \frac{-1}{4}\cos^{4}{(\theta)} + C | &= \frac{-1}{4}\cos^{4}{(\theta)} + C |
Revision as of 19:46, 22 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} &= \-int u^{3}du \\[2ex] \end{align} }
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C &= \frac{-1}{4}\cos^{4}{(\theta)} + C