5.5 The Substitution Rule/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
\int (x+1)\sqrt{2x+x^{2}}dx = \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | \int (x+1)\sqrt{2x+x^{2}}dx = \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | ||
&= \frac{1}{3}\(u)^{\frac{3}{2}} + C | |||
Line 26: | Line 26: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
&= \frac{1]{2}\left(\frac{2u^{3}{2}}{3})\right + C | &= \frac{1]{2}\left(\frac{2u^{3}{2}}{3})\right + C |
Revision as of 21:15, 22 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int (x+1)\sqrt{2x+x^{2}}dx = \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] &= \frac{1}{3}\(u)^{\frac{3}{2}} + C \end{align} }
&= \frac{1]{2}\left(\frac{2u^{3}{2}}{3})\right + C