5.5 The Substitution Rule/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
\int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | \int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | ||
&= \frac{1]{2}(\frac{2u^ | &= \frac{1]{2}(\frac{2u^{3}}{3}) + C | ||
&= \frac{1}{3}\(u)^{\frac{3}{2}} + C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 21:21, 22 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] &= \frac{1]{2}(\frac{2u^{3}}{3}) + C &= \frac{1}{3}\(u)^{\frac{3}{2}} + C \end{align} }