5.3 The Fundamental Theorem of Calculus/8: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math> g(x)=\int_{3}^{x}e^{t^2-t}dt \break</math>
\begin{align}
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x}  
g(x)=\int_{3}^{x}e^{t^2-t}dt \\
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right] \\
=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} \\
\text{Therefore, } g'(x)=e^{x^2-x}
\text{Therefore, } g'(x)=e^{x^2-x}



Revision as of 20:34, 23 August 2022

Failed to parse (unknown function "\break"): {\displaystyle g(x)=\int_{3}^{x}e^{t^2-t}dt \break} \frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} \text{Therefore, } g'(x)=e^{x^2-x}

\end{align} </math>