5.3 The Fundamental Theorem of Calculus/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
FTC #1
FTC #1


<math>G(x)=f^\prime(x)</math>  or in other words <math>\frac{d}{dx}</math> of <math>\int\limits_{a(x)}^{b(x)}F(x)dx</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math>
<math>G(x)=f^\prime(x)</math>  or in other words <math>\frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math>


<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>
<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>

Revision as of 02:22, 24 August 2022

FTC #1

or in other words is

so

using the formula we get y=

which is equal to

which is=

or simplified to 


FTC #2

is equal to Where F is the antiderivative of f such that