5.3 The Fundamental Theorem of Calculus/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/27" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<math>\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx</math><br>
<math>
<math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br>
\begin{align}
<math>= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math>


\int_0^2 x(2+x^5)\,dx &= \int_0^2 (2x+x^6)\,dx = \int_0^2 (2x+x^6)\,dx \\[2ex]


{\displaystyle = \left((2)^2+\frac{(2)}^7{7}\right)-\left((0)^2)+}
 
&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex]
 
&= \left((2)^2-\frac{(2)^7}{7}\right)-\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex]
 
&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex]
&= \frac{156}{7}
 
\end{align}
</math>

Latest revision as of 21:17, 6 September 2022