6.2 Trigonometric Functions: Unit Circle Approach/14: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Reverted
m (Protected "6.2 Trigonometric Functions: Unit Circle Approach/14" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<math>\left(\frac{3}{2}, \frac{\sqrt{1}}{2}\right)</math>
<math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math>


<math>
<math>
\begin{align}
\begin{align}


\sin{(t)} &= \frac{\sqrt{1}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\cos{(t)} &= \frac{3}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\cos{(t)} &= \frac{1}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\tan{(t)} &= {2}}{\frac{3}{2}}\frac{\frac{\sqrt{1}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:19, 25 August 2022