6.2 Trigonometric Functions: Unit Circle Approach/19: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>\left(\frac{2\sqrt{ | <math>\left(\frac{2\sqrt{2}}{3}, -\frac{1}{3}\right)</math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\sin{(t)} &= -\frac{ | \sin{(t)} &= -\frac{1}{3} & \csc{(t)} &= -\frac{1}{-\frac{1}{3}} = \frac{1}{1}\cdot-\frac{3}{1} = -3\\[2ex] | ||
\cos{(t)} &= \frac{ | |||
\tan{(t)} &= \frac{-\frac{ | \cos{(t)} &= \frac{2\sqrt{2}}{3} & \sec{(t)} &= \frac{1}{\frac{2\sqrt{2}}{3}} = \frac{1}{1}\cdot\frac{3}{2\sqrt{2}} = \frac{3}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{3\sqrt{2}}{4}\\[2ex] | ||
\tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4} & \cot{(t)} &= \frac{\frac{2\sqrt{2}}{3}}{-\frac{1}{3}} = \frac{2\sqrt{2}}{3}\cdot-\frac{3}{1} = -2\sqrt{2} \\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 17:02, 30 August 2022