6.2 Trigonometric Functions: Unit Circle Approach/14: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Reverted |
m (Protected "6.2 Trigonometric Functions: Unit Circle Approach/14" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>\left(\frac{ | <math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\sin{(t)} &= \frac{\sqrt{ | \sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | ||
\cos{(t)} &= \frac{ | \cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{(t)} &= {2}}{\frac{ | \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Latest revision as of 22:19, 25 August 2022