6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\frac{5\pi}{6} \Rightarrow (\frac{-\sqrt{3}}{2}, \frac{1}{2})</math> <math> \begin{align} \sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] \cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\s...") |
No edit summary |
||
(31 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>\frac{5\pi}{6} \Rightarrow (\frac{-\sqrt{3}}{2}, \frac{1}{2})</math> | <math>\frac{5\pi}{6} \Rightarrow \left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right)</math><br><br> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\sin{( | \sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1}=2\\[2ex] | ||
\ | |||
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | |||
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | |||
& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 22:36, 25 August 2022