6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{\left(\frac{5\pi}{6}\right)} &= | \sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1}=2\\[2ex] | ||
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} | \cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | ||
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | \tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | ||
& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] | |||
& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 22:36, 25 August 2022