6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(56 intermediate revisions by the same user not shown)
Line 4: Line 4:
\begin{align}
\begin{align}


\sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{2}{\sqrt{3}}=\\[2ex]
\sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{\cancel2}} \cdot \cancel{2} = \frac{2}{\sqrt{3}} \cdot \sqrt{3} = \frac {2\sqrt{3}}{3}  \\[2ex]


\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{1}{-\frac{1}{\cancel{2}}} \cdot \cancel{2} = -\frac{2}{1} = -2  \\[2ex]  


\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}  
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{\cancel 2}}{-\frac{{1}}{\cancel 2}} \cdot \cancel{2} = \frac{\sqrt{3}}{-1} = -\sqrt{3}  


& \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]  \end{align} </math>
& \cot{\left(\frac{8\pi}{3}\right)} &= \frac{-\frac{1}{\cancel 2}} {\frac{\sqrt{3}}{\cancel 2}} \cdot \cancel 2 = \frac{-1}{\sqrt{3}} \cdot \sqrt{3}= \frac{-\sqrt{3}}{3}  \\[2ex]  \end{align} </math>

Latest revision as of 09:45, 27 August 2022