5.3 The Fundamental Theorem of Calculus/53: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/53" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math>
<math>g(x)=\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math>


<math>\frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=3*\frac{3x^2-1}{3x^2+1}</math>
 
<math>
\begin{align}
 
\frac{d}{dx}[g(x)] &= \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right] \\[2ex]
 
&=3\cdot\frac{(3x)^2-1}{(3x)^2+1}-2\cdot\frac{(2x)^2-1}{(2x)^2+1} =3\cdot\frac{9x^2-1}{9x^2+1}-2\cdot\frac{4x^2-1}{4x^2+1} \\[2ex]
 
&=\frac{3(9x^2-1)}{9x^2+1}-\frac{2(4x^2-1)}{4x^2+1} \\[2ex]
 
\end{align}
</math>

Latest revision as of 22:24, 6 September 2022