5.3 The Fundamental Theorem of Calculus/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/53" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(12 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math>\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math> | <math>g(x)=\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math> | ||
<math>\frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]= | |||
<math> | |||
\begin{align} | |||
\frac{d}{dx}[g(x)] &= \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right] \\[2ex] | |||
&=3\cdot\frac{(3x)^2-1}{(3x)^2+1}-2\cdot\frac{(2x)^2-1}{(2x)^2+1} =3\cdot\frac{9x^2-1}{9x^2+1}-2\cdot\frac{4x^2-1}{4x^2+1} \\[2ex] | |||
&=\frac{3(9x^2-1)}{9x^2+1}-\frac{2(4x^2-1)}{4x^2+1} \\[2ex] | |||
\end{align} | |||
</math> |
Latest revision as of 22:24, 6 September 2022