6.2 Trigonometric Functions: Unit Circle Approach/13: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(45 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math>
<math>\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)</math>


<math>
<math>
\begin{align}
\begin{align}


\sin{(t)} &= -(\frac{\sqrt{3}}{2}) & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\sin{(t)} &= \frac{1}{2} & \csc{(t)} &= \frac{1}{\frac{1}{2}}=2\\[2ex]
\cos{(t)} &= \frac{1}{2}         & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]
\cos{(t)} &= \frac{\sqrt{3}}{2}         & \sec{(t)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}\\[2ex]  
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)} &= \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\sqrt{3}}{\cancel{2}} \cdot \frac{\cancel{2}}{1}=\sqrt{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 17:13, 26 August 2022