6.2 Trigonometric Functions: Unit Circle Approach/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(21 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>\left(\frac{3}{2}, | <math>\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)</math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\sin{(t)} &= \frac{1}{2} & \csc{(t)} &= | \sin{(t)} &= \frac{1}{2} & \csc{(t)} &= \frac{1}{\frac{1}{2}}=2\\[2ex] | ||
\cos{(t)} &= \frac{\sqrt{3}}{2} & \sec{(t)} &= \frac{2}{ | \cos{(t)} &= \frac{\sqrt{3}}{2} & \sec{(t)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}\\[2ex] | ||
\tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac | \tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)} &= \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\sqrt{3}}{\cancel{2}} \cdot \frac{\cancel{2}}{1}=\sqrt{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 17:13, 26 August 2022