2.1 Functions: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
 
(38 intermediate revisions by the same user not shown)
Line 5: Line 5:
* [https://youtu.be/Rd4KoqpO9b8 Part 3]
* [https://youtu.be/Rd4KoqpO9b8 Part 3]


== Lecture Notes ==
== Lecture notes ==


:1. How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>?<br>


# How to read: <br>
:: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br><br>
:<math>D=\{\forall x | x \in \Re, x\neq -5\} </math>


:<math>\begin{align}
:2. How do you convert from radical form to exponential form?
 
:: <math>\sqrt[m]{(x)^n}=\left ( \sqrt[m]{x} \right )^n =x^{\frac{n}{m}}</math> <br>
\overbrace{D}^{\text{the domain}}  
:: Where <math>m</math> is called the index and <math>n</math> is called the power<br><br>
 
\underbrace{=}_{\text{is}}
 
\overbrace{\{}^{\text{the set}}
 
\underbrace{\forall x}_{\text{of all x}}
 
\overbrace{|}^{\text{such that}}
 
\underbrace{x\in\Re}_{\text{x is an element of the real number set}}
 
\overbrace{, x \neq -5}^{\text{where x is not equal to -5}}
 
 
\end{align}</math>


==Solutions==
==Solutions==

Latest revision as of 02:29, 20 August 2022

Lecture[edit]

Lecture notes[edit]

1. How do you read ?


2. How do you convert from radical form to exponential form?

Where is called the index and is called the power

Solutions[edit]