6.2 Trigonometric Functions: Unit Circle Approach/19: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math>
<math>\left(\frac{2\sqrt{2}}{3}, -\frac{1}{3}\right)</math>


<math>
<math>
\begin{align}
\begin{align}


\sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\sin{(t)} &= -\frac{1}{3}       & \csc{(t)} &= -\frac{1}{-\frac{1}{3}} = \frac{1}{1}\cdot-\frac{3}{1} = -3\\[2ex]


\cos{(t)} &= \frac{1}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\cos{(t)} &= \frac{2\sqrt{2}}{3}        & \sec{(t)} &= \frac{1}{\frac{2\sqrt{2}}{3}} = \frac{1}{1}\cdot\frac{3}{2\sqrt{2}} = \frac{3}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{3\sqrt{2}}{4}\\[2ex]  


\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4}     & \cot{(t)} &= \frac{\frac{2\sqrt{2}}{3}}{-\frac{1}{3}} = \frac{2\sqrt{2}}{3}\cdot-\frac{3}{1} = -2\sqrt{2} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 17:02, 30 August 2022