6.2 Trigonometric Functions: Unit Circle Approach/78: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "6.2 Trigonometric Functions: Unit Circle Approach/78" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\theta \rightarrow (5, -12)</math><br><br>
<math>\theta \rightarrow (5, -12)</math><br><br>


<math> \theta \rightarrow x=5, \, y=-12, \, r=\,? </math><br>
<math> \theta \rightarrow x=5, \, y=-12, \, r=\,? </math>


<br>
<math>  
<math>  
\begin{align}
\begin{align}
Line 13: Line 14:


\end{align}
\end{align}
</math>
</math><br><br>


<math> \theta \rightarrow x=5, \, y=-12, \, r=13 </math><br>
<math> \theta \rightarrow x=5, \, y=-12, \, r=13 </math><br><br>


<math>
<math>
\begin{align}
\begin{align}


\sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex]
\sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{13}{-12}\\[2ex]


\cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= 3\\[2ex]  
\cos{(\theta)} &= \frac{5}{13} & \sec{(\theta)} &= \frac{13}{5}\\[2ex]  


\tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= 3 \\[2ex]
\tan{(\theta)} &= \frac{-12}{5} & \cot{(\theta)} &= \frac{5}{-12} \\[2ex]




\end{align}
\end{align}
</math>
</math>

Latest revision as of 17:05, 26 August 2022