5.4 Indefinite Integrals and the Net Change Theorem/6: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/6" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int\left(\sqrt{x^3}+\sqrt[3]{x^2}\right)dx = \int\left(x^{\frac{1}{3}+x^{\frac{2}{3}}\right) | \begin{align} | ||
\int\left(\sqrt{x^3}+\sqrt[3]{x^2}\right)dx &= \int\left(x^{\frac{1}{3}}+x^{\frac{2}{3}}\right)dx \\[2ex] | |||
&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex] | |||
&= \frac{3x^{\frac{4}{3}}}{4} + \frac{3x^{\frac{5}{3}}}{5} + C | |||
\end{align} | |||
</math> | </math> |
Latest revision as of 18:25, 26 August 2022