5.4 Indefinite Integrals and the Net Change Theorem/30: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/30" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(14 intermediate revisions by the same user not shown)
Line 3: Line 3:




\int_{1}^{2}\frac{y+5y^7}{y^3}dy &= \int_{1}^{2}\left(\frac{y}{y^3}+\frac{5y^7}{y^3}\right)dy \int_{1}^{2}(y^{-2}+5y^{4})\\[2ex]
\int_{1}^{2}\frac{y+5y^7}{y^3}dy &= \int_{1}^{2}\left(\frac{y}{y^3}+\frac{5y^7}{y^3}\right)dy = \int_{1}^{2}(y^{-2}+5y^{4})dy\\[2ex]


&= \left(\frac{y^{-2+1}}{-2+1}+\frac{5y^{4+1}}{4+1}\right)\bigg|_{1}^{2} = \left(\frac{y^{-1}}{-1}+y^5\right)\bigg|_{1}^{2} = \left(-\frac{1}{y}+y^5\right)\bigg|_{1}^{2} \\[2ex]
&= \left(-\frac{1}{(2)}+(2)^5\right) - \left(-\frac{1}{(1)}+(1)^5\right) \\[2ex]
&= \left(-\frac{1}{2}+32\right) = \left(-\frac{1}{2}+\frac{64}{2}\right) = \frac{63}{2}
\end{align}
\end{align}
</math>
</math>

Latest revision as of 18:25, 26 August 2022