5.4 Indefinite Integrals and the Net Change Theorem/30: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/30" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
&= \left(\frac{y^{-2+1}}{-2+1}+\frac{5y^{4+1}}{4+1}\right)\bigg|_{1}^{2} = \left(\frac{y^{-1}}{-1}+y^5\right)\bigg|_{1}^{2} = \left(-\frac{1}{y}+y^5\right)\bigg|_{1}^{2} \\[2ex] | &= \left(\frac{y^{-2+1}}{-2+1}+\frac{5y^{4+1}}{4+1}\right)\bigg|_{1}^{2} = \left(\frac{y^{-1}}{-1}+y^5\right)\bigg|_{1}^{2} = \left(-\frac{1}{y}+y^5\right)\bigg|_{1}^{2} \\[2ex] | ||
&= \left(-\frac{1}{(2)}+(2)^5\right) - \left(-\frac{1}{(1)}+(1)^5\right) | &= \left(-\frac{1}{(2)}+(2)^5\right) - \left(-\frac{1}{(1)}+(1)^5\right) \\[2ex] | ||
&= \left(-\frac{1}{2}+32\right) | &= \left(-\frac{1}{2}+32\right) = \left(-\frac{1}{2}+\frac{64}{2}\right) = \frac{63}{2} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 18:25, 26 August 2022