5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \begin{align} \int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &=x^2-2x^\frac{-1}{2}dx &=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &=\frac{1}{3}x^3-4\sqrt{x}+C \end{align} </math>") |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/11" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(35 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = \int\left(x^2-2x^{\frac{1}{2}-1}\right)dx = \int\left(x^2-2x^{-\frac{1}{2}}\right)dx \\[2ex] | |||
&= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C \\[2ex] | |||
&= \frac{x^3}{3}-4\sqrt{x}+C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:39, 21 September 2022