2.1 Functions: Difference between revisions
Jump to navigation
Jump to search
(12 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
== Lecture notes == | == Lecture notes == | ||
:1. How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>? | :1. How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>?<br> | ||
: | :: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br><br> | ||
:2. How do you | :2. How do you convert from radical form to exponential form? | ||
: | :: <math>\sqrt[m]{(x)^n}=\left ( \sqrt[m]{x} \right )^n =x^{\frac{n}{m}}</math> <br> | ||
:: Where <math>m</math> is called the index and <math>n</math> is called the power<br><br> | |||
==Solutions== | ==Solutions== |