2.1 Functions: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 7: Line 7:
== Lecture notes ==
== Lecture notes ==


:1. How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>?<br><br>
:1. How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>?<br>


:: Answer: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br><br>
:: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br><br>


:2. How do you covert from radical form to exponential form?
:2. How do you convert from radical form to exponential form?
:: Answer: <math>\begin{align}\sqrt[m]{(x)^n}=\left(\sqrt[m]{x}\right)^{n}=x^{\frac{n}{m}}\end{align}</math> Where <math>m</math> is called the index and <math>n</math> is called the power.
:: <math>\sqrt[m]{(x)^n}=\left ( \sqrt[m]{x} \right )^n =x^{\frac{n}{m}}</math> <br>
 
:: Where <math>m</math> is called the index and <math>n</math> is called the power<br><br>
<math>\left ( \frac{1}{2} \right )^n</math>


==Solutions==
==Solutions==

Latest revision as of 02:29, 20 August 2022

Lecture[edit]

Lecture notes[edit]

1. How do you read ?


2. How do you convert from radical form to exponential form?

Where is called the index and is called the power

Solutions[edit]