5.5 The Substitution Rule/54: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math> \int_{0}^{7} \sqrt{4+3x}dx </math> <math> \begin{align} u &=\ln(x) \\[2ex] du &= \frac{1}{x}dx \\[2ex] \end{align} </math> <math> \begin{align} \int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex] &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] &= -\cos{(u)} + C \\[2ex] &= -\cos{(\ln{(x)})} + C \end{align} </math>")
 
No edit summary
 
(24 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\int_{0}^{7} \sqrt{4+3x}dx
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx
</math>
</math>


Line 7: Line 7:
\begin{align}
\begin{align}


u &=\ln(x) \\[2ex]
u &=x^2 \\[2ex]
du &= \frac{1}{x}dx \\[2ex]
du &= 2xdx \\[2ex]
\frac{1}{2}du &= xdx \\[2ex]


\end{align}
\end{align}
</math>
</math>


New upper limit: <math>\pi = (\sqrt{\pi})^2</math><br>
New lower limit: <math>0 = (0)^2</math>


<math>
<math>
\begin{align}
\begin{align}


\int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex]
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]
 
&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex]
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= -\cos{(u)} + C \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= -\cos{(\ln{(x)})} + C
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]
&= 0


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:50, 28 August 2022



New upper limit:
New lower limit: