5.5 The Substitution Rule/54: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{0}^{\sqrt{\pi}} x\cos{x^2}\,dx | \int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx | ||
</math> | </math> | ||
Line 7: | Line 7: | ||
\begin{align} | \begin{align} | ||
u &= | u &=x^2 \\[2ex] | ||
du &= | du &= 2xdx \\[2ex] | ||
\frac{1}{ | \frac{1}{2}du &= xdx \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
New upper limit: <math>\pi = (\sqrt{\pi})^2</math><br> | |||
New lower limit: <math>0 = (0)^2</math> | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{0}^{ | \int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex] | ||
&= \ | &= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex] | ||
&= | &= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex] | ||
&= | &= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] | ||
&= 0 | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 22:50, 28 August 2022
New upper limit:
New lower limit: