5.4 Indefinite Integrals and the Net Change Theorem/23: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math> \int\limits_{-1}^{0}(2x-e^x)dx </math> <math> =\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx=-1-(-1-\frac{1}{e})=\frac{1}{e}-2 </math>")
 
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/23" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>
<math>
\int\limits_{-1}^{0}(2x-e^x)dx
\begin{align}
</math>
\int_{-1}^{0}(2x-e^x)dx &=\left[\frac{2x^2}{2}-e^x\right]_{-1}^{0} \\[2ex]
<math>
&= [0^{2}-e^{0}]-[(-1)^2-e^{-1}] \\[2ex]
=\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx=-1-(-1-\frac{1}{e})=\frac{1}{e}-2
&=-1-\left(1-\frac{1}{e}\right) \\[2ex]
&=\frac{1}{e}-2
\end{align}
 
</math>
</math>

Latest revision as of 19:40, 21 September 2022