6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}} \cdot 2 | \sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{\cancel2}} \cdot \cancel{2} = \frac{2}{\sqrt{3}} \cdot \sqrt{3} = \frac {2\sqrt{3}}{3} \\[2ex] | ||
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= -\frac{{2}}{1} = -2 \\[2ex] | \cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{1}{-\frac{1}{\cancel{2}}} \cdot \cancel{2} = -\frac{2}{1} = -2 \\[2ex] | ||
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{\cancel 2}}{-\frac{{1}}{\cancel 2}} \cdot \cancel{2} = \frac{\sqrt{3}}{-1} = -\sqrt{3} | \tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{\cancel 2}}{-\frac{{1}}{\cancel 2}} \cdot \cancel{2} = \frac{\sqrt{3}}{-1} = -\sqrt{3} | ||
& \cot{\left(\frac{8\pi}{3}\right)} &= \frac{-\frac{1}{\cancel 2}} {\frac{\sqrt{3}}{\cancel 2}} \cdot \cancel 2 = \frac{-1}{\sqrt{3}} \cdot \sqrt{3}= \frac{-\sqrt{3}}{3} \\[2ex] \end{align} </math> | & \cot{\left(\frac{8\pi}{3}\right)} &= \frac{-\frac{1}{\cancel 2}} {\frac{\sqrt{3}}{\cancel 2}} \cdot \cancel 2 = \frac{-1}{\sqrt{3}} \cdot \sqrt{3}= \frac{-\sqrt{3}}{3} \\[2ex] \end{align} </math> |
Latest revision as of 09:45, 27 August 2022