6.1 Areas Between Curves/18: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
 
(29 intermediate revisions by the same user not shown)
Line 12: Line 12:
</math>
</math>


<math>\int_{-3}^{3} \left|(8-x^2) - (x^2)\right|dx </math>


<math>  
<math>  
Line 19: Line 21:
  x^2 &= 4 \\
  x^2 &= 4 \\
x &= \pm2  
x &= \pm2  
\end{align}
</math>
<math>\int_{-3}^{3} \left|(8-x^2) - (x^2)\right|dx = \int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx + \int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx + \int_{2}^{3}\left((x^2)-(8-x^2)\right)dx = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}</math>
<math>
\begin{align}
\int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx &= \int_{-3}^{-2}\left(2x^2-8)\right)dx \\[2ex]
&= \left[\frac{2x^3}{3}-8x\right]\Bigg|_{-3}^{-2} \\[2ex]
&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex]
&= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex]
&= \frac{14}{3}
\end{align}
\end{align}
</math>
</math>
Line 27: Line 48:


\int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx &= \int_{-2}^{2}\left(8-2x^2\right)dx \\[2ex]
\int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx &= \int_{-2}^{2}\left(8-2x^2\right)dx \\[2ex]
&= \left(8x-\frac{2x^3}{3}\right)\bigg|_{-2}^{2} \\[2ex]
&= \left[8x-\frac{2x^3}{3}\right]\Bigg|_{-2}^{2} \\[2ex]
&= \left(8(2)-\frac{2(2)^3}{3}\right) - \left(8(-2)-\frac{2(-2)^3}{3}\right) \\[2ex]
&= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex]
&= \left(16-\frac{16}{3}\right)-\left(-16+\frac{16}{3}\right) = 32-\frac{32}{3} = \frac{96}{3}-\frac{32}{3} \\[2ex]
&= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex]
&= \frac{64}{3}
&= \frac{64}{3}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 18:58, 20 September 2022

Desmos-graph.png