5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(43 intermediate revisions by 2 users not shown)
Line 1: Line 1:
17. \begin{align}
<math>
\int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C
</math>


&= \int_{}^{}1+tan^2 x\,dx \\[2ex]
 
&= \int1+\frac{sin^2x}{cos^2x}\,dx \\[2ex]
Note: <math>1+\tan^2{\alpha} = \sec^2\alpha</math>
&= \int\frac{cos^2x+sin^2x}{cos^2x}\,dx \\[2ex]
 
&= \cos^2x+sin^2x=1, thus
 
&= \int\frac{1}{cos^2x}\,dx \\[2ex]
Or,
&= \int\sec^2x\,dx \\[2ex]
 
&= tanx+C\
 
\end{align}
<math>
 
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha  = \int\frac{1}{cos^2\alpha}\,d\alpha =
 
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C
</math>
 
 
Note: <math>\cos^2\alpha+sin^2\alpha=1</math>

Latest revision as of 19:39, 21 September 2022


Note:


Or,



Note: