5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(31 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math> | |||
\int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C | |||
</math> | |||
Note: <math>1+\tan^2{\alpha} = \sec^2\alpha</math> | |||
Or, | |||
<math> | |||
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}\,d\alpha = | |||
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C | |||
</math> | |||
Note: <math>\cos^2\alpha+sin^2\alpha=1</math> | |||
Latest revision as of 19:39, 21 September 2022
Note:
Or,
Note: