6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(30 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>\frac{-14\pi}{3} \Rightarrow \left(\frac{- | <math>\frac{-14\pi}{3} \Rightarrow \left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)</math><br><br> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\sin{\left(\frac{ | \sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}= \frac{2\sqrt{3}}{3}\\[2ex] | ||
\cos{\left(\frac{ | \cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{1}{2}}=2\\[2ex] | ||
\tan{\left(\frac{ | \tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3} | ||
& \cot{\left(\frac{ | & \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{\cancel{2}}}{\frac{\cancel{-}\sqrt{3}}{\cancel{2}}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:53, 30 August 2022