6.2 Trigonometric Functions: Unit Circle Approach/57: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 2: | Line 2: | ||
-\frac {\pi}{6}= -30^{\circ}</math><br> | -\frac {\pi}{6}= -30^{\circ}</math><br> | ||
<math> 360^{\circ} -30^{\circ} = 330^{\circ} = \frac{\sqrt{3}}{2} , -\frac{1}{2}</math><br> | <math> 360^{\circ} -30^{\circ} = 330^{\circ} = \frac{\sqrt{3}}{2} , -\frac{1}{2}</math><br> | ||
<math>cos(-\frac {\pi}{6})= \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2}</math><br> | <math>cos(-\frac {\pi}{6})= \frac{\frac{\sqrt{3}}{2}}{\cancel{1}} = \frac{\sqrt{3}}{2}</math><br> | ||
<math>sin(-\frac {\pi}{6})= \frac{-\frac{1}{2}}{1} = -\frac{1}{2}</math><br> | <math>sin(-\frac {\pi}{6})= \frac{-\frac{1}{2}}{\cancel{1}} = -\frac{1}{2}</math><br> | ||
<math>tan(-\frac {\pi}{6})= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\cdot(2) = -\frac{1}{\sqrt{3}} \cdot ({\sqrt{3}}) = \frac{-\sqrt{3}}{3}</math><br> | <math>tan(-\frac {\pi}{6})= \frac{-\frac{1}{\cancel{2}}}{\frac{\sqrt{3}}{\cancel{2}}}\cdot(2) = -\frac{1}{\sqrt{3}} \cdot ({\sqrt{3}}) = \frac{-\sqrt{3}}{3}</math><br> | ||
<math>sec(-\frac {\pi}{6})= \frac{1}{\frac{\sqrt{3}}{2}} \cdot (2) = \frac{2}{\sqrt{3}} \cdot (\sqrt{3}) = \frac {2\sqrt{3}}{3}</math><br> | <math>sec(-\frac {\pi}{6})= \frac{1}{\frac{\sqrt{3}}{\cancel{2}}} \cdot (2) = \frac{2}{\sqrt{3}} \cdot (\sqrt{3}) = \frac {2\sqrt{3}}{3}</math><br> | ||
<math>csc(-\frac {\pi}{6})= \frac{1}{-\frac{1}{2}} \cdot (2) = \frac{2}{-1} = -2 </math><br> | <math>csc(-\frac {\pi}{6})= \frac{1}{-\frac{1}{\cancel{2}}} \cdot (2) = \frac{2}{-1} = -2 </math><br> | ||
<math>cot(-\frac {\pi}{6})= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot (2) = \frac{\frac{2}{\sqrt{3}}{-2} = -\sqrt{3}</math><br> | <math>cot(-\frac {\pi}{6})= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot (2) = \frac{\frac{2}{\sqrt{3}}}{-2} = -\sqrt{3}</math><br> |
Latest revision as of 19:53, 29 August 2022