5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/43" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(26 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\ | \int_{-1}^{2}(x-2|x|)dx &= \int_{-1}^{0}(x-2(-x))dx + \int_{0}^{2}(x-2(x))dx = \int_{-1}^{0}3x\,dx - \int_{0}^{2}x\,dx \\[2ex] | ||
&= \left(\frac{3x^2}{2} \right)\bigg|_{-1}^{0} - \left(\frac{x^2}{2} \right)\bigg|_{0}^{2} \\[2ex] | |||
&= \left[\frac{3(0)^2}{2}-\frac{3(-1)^2}{2}\right]-\left[\frac{(2)^2}{2} - \frac{(0)^2}{2}\right] \\[2ex] | |||
&= \left[-\frac{3}{2}\right]-\left[\frac{4}{2}\right] \\[2ex] | |||
&= -\frac{7}{2} \\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:42, 21 September 2022