2.1 Functions: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
 
Line 11: Line 11:
:: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br><br>
:: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br><br>


:2. How do you covert from radical form to exponential form?
:2. How do you convert from radical form to exponential form?
:: <math>\sqrt[m]{(x)^n}=\left ( \sqrt[m]{x} \right )^n =x^{\frac{n}{m}}</math> <br>
:: <math>\sqrt[m]{(x)^n}=\left ( \sqrt[m]{x} \right )^n =x^{\frac{n}{m}}</math> <br>
:: Where <math>m</math> is called the index and <math>n</math> is called the power<br><br>
:: Where <math>m</math> is called the index and <math>n</math> is called the power<br><br>

Latest revision as of 02:29, 20 August 2022

Lecture[edit]

Lecture notes[edit]

1. How do you read ?


2. How do you convert from radical form to exponential form?

Where is called the index and is called the power

Solutions[edit]