6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 10: Line 10:
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}


& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}}= \frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{\cancel{2}}}{\frac{\cancel{-}\sqrt{3}}{\cancel{2}}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:53, 30 August 2022