6.2 Trigonometric Functions: Unit Circle Approach/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 5: Line 5:


\sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= \frac{1}{\frac{\sqrt{2}}{2}} \cdot{2} = \frac{2}{\sqrt{2}} \cdot{\sqrt{2}} =  \frac{2\sqrt{2}}{2} = \sqrt{2} \\[2ex]
\sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= \frac{1}{\frac{\sqrt{2}}{2}} \cdot{2} = \frac{2}{\sqrt{2}} \cdot{\sqrt{2}} =  \frac{2\sqrt{2}}{2} = \sqrt{2} \\[2ex]
\cos{(t)} &= -\frac{\sqrt{2}}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\cos{(t)} &= -\frac{\sqrt{2}}{2}        & \sec{(t)} &= \frac{1}{\frac{-\sqrt{2}}{2}} \cdot{2} = \frac{2}{-\sqrt{2}} \cdot{\sqrt{2}} = -\frac{2\sqrt{2}}{2} = -\sqrt{2\\[2ex]  
\tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1 & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1 & \cot{(t)} &= \frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1  \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 15:59, 1 September 2022