5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/39" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(30 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
<math>
= <math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}</math>
\begin{align}


= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{/frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-1/2}+x^{-1/6}</math>
\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx &= \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx \\[2ex]


Add one to the exponents and divide by the new exponent
&= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = \left[2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\right]_{1}^{64} \\[2ex]


= <math>\int_{1}^{64}\frac{x^{1/2}}{\frac{1}{2}}+ \frac{x^{5/6}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}</math>
&= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex]


=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math>
&= \left[2\cdot8 + \frac{6}{5}(2)^5\right] - \left[2+\frac{6}{5}\right] = \left[16+\frac{192}{5}\right] - \left[\frac{16}{5}\right] = \left[\frac{80}{5} + \frac{192}{5}\right] - \left[\frac{16}{5}\right]\\[2ex]


= <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math>
&= \frac{256}{5}


= <math>16+38.4 - (2+1.2)</math>
\end{align}
 
</math>
= <math>54.4 - 3.2</math>
 
= <math>51.2</math>
 
= <math>\frac{256}{5}</math>

Latest revision as of 19:41, 21 September 2022