5.4 Indefinite Integrals and the Net Change Theorem/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/21" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(10 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
<math>\begin{align}\int_{0}^{2}(6x^{2}-4x+5) dx = \frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2} | <math>\begin{align}\int_{0}^{2}(6x^{2}-4x+5)dx &=\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}=\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}=2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}\\[2ex]&=[2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}]= 16-18+0\\[2ex]&=18\end{align}</math> | ||
=\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2} = 2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2} | |||
= [2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}] = 16-18+0 | |||
= 18\end{align}</math> |
Latest revision as of 19:40, 21 September 2022