5.5 The Substitution Rule/51: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(28 intermediate revisions by 2 users not shown)
Line 4: Line 4:
& \int_{0}^{2} ({x-1})^{25} dx \\[2ex]
& \int_{0}^{2} ({x-1})^{25} dx \\[2ex]


& \int {t^{25}} dt \\[2ex]
\end{align}
</math>


& \cfrac{t^{25}} {26} \\[2ex]


& \cfrac{(x-1)^{26}{26}\bigg|_{0}^{2}
<math>
\begin{align}


u &= x-1 \\[2ex]
du &= dx \\[2ex]


\end{align}
</math>
<math>
\begin{align}
\int_{0}^{2} {u^{25}} du = \frac{1}{26}{u^{26}} &= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} = \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} = \frac{1^{26}} {26} - \frac{-1^{26}} {26} = 0 \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 17:33, 7 September 2022