5.5 The Substitution Rule/63: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math>\int_{0}^{a}\ | <math>\int_{0}^{a} x\,\cdot \sqrt{x^2+a^2}dx</math> | ||
<math> | |||
\begin{align} | |||
u &=x^2+ a^2\\[2ex] | |||
du &=2xdx \\[2ex] | |||
\frac{1}{2}du &= xdx \\[2ex] | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\frac{1}{2} | |||
\int_{a^2}^{2a^2} | |||
\sqrt{u}\,\cdot du = \frac{1}{2}\,\cdot \frac{a^{\frac{1}{2}+1}}{\frac{1}{2}+1}\bigg|_{a^2}^{2a^2} | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\frac{1}{2}\,\cdot \frac{2}{3}\,\cdot\ u^\frac{3}{2}\bigg|_{a^2}^{2a^2} = \frac{1}{3} \left(2a^{2}\right)^\frac{3}{2}- \frac{1}{3} \left(a^{2}\right)^\frac{3}{2} | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
= \frac{1}{3}\,\cdot 2^\frac{3}{2}\,\cdot {a^3}-\frac{1}{3} {a^3} | |||
=\frac{1}{3}\left(2^\frac{3}{2} -1 \right) {a^3} | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\frac{1}{3} \left(2\sqrt{2}-1\right) {a^3} | |||
\end{align} | |||
</math> |
Latest revision as of 00:59, 2 September 2022