6.2 Trigonometric Functions: Unit Circle Approach/49: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math> 200 \Rightarrow (\frac{7/pi}{6}</math><br><br>
<math> 210 \Rightarrow (\frac{7\pi}{6}) \Rightarrow (\frac{-\sqrt{3}}{2},\frac{-1}{2})</math><br><br>


<math>
<math>
\begin{align}
\begin{align}


\sin{\left(\frac{2\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{2\pi}{3}\right)} &= \frac{{1}} \frac{\sqrt{3}}{2} \cdot{2} = \frac{2}{\sqrt{3}} \cdot{\sqrt{3}} = \frac{2\sqrt{3}}{3} \\[2ex]
\sin{\left(\frac{7\pi}{6}\right)} &= \frac{-1}{2} & \csc{\left(\frac{7\pi}{6}\right)} &= \frac{{1}} \frac{-1}{2} \cdot{2} = \frac{2}{-1} = -2 \\[2ex]


\cos{\left(\frac{2\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{2\pi}{3}\right)} &= \frac{1}{-\frac{1}{2}} \cdot{2} = -\frac{2}{1} = -2 \\[2ex]  
\cos{\left(\frac{7\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{7\pi}{6}\right)} &= \frac{1}{\frac{-\sqrt{3}}{2}} \cdot{2} = \frac{2}{-\sqrt{3}} \cdot{-\sqrt{3}} = \frac{2-\sqrt{3}}{3} \\[2ex]  


\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}
\tan{\left(\frac{7\pi}{6}\right)} &= \frac{\frac{-\sqrt{3}}{2}}{\frac{-1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}


& \cot{\left(\frac{2\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]
& \cot{\left(\frac{7\pi}{6}\right)} &= \frac{\frac{-\sqrt{3}}{2}}{\frac{-1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 21:30, 1 September 2022