6.2 Trigonometric Functions: Unit Circle Approach/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{\left(\frac{ | \sin{\left(\frac{7\pi}{6}\right)} &= \frac{-1}{2} & \csc{\left(\frac{7\pi}{6}\right)} &= \frac{{1}} \frac{-1}{2} \cdot{2} = \frac{2}{-1} = -2 \\[2ex] | ||
\cos{\left(\frac{ | \cos{\left(\frac{7\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{7\pi}{6}\right)} &= \frac{1}{\frac{-\sqrt{3}}{2}} \cdot{2} = \frac{2}{-\sqrt{3}} \cdot{-\sqrt{3}} = \frac{2-\sqrt{3}}{3} \\[2ex] | ||
\tan{\left(\frac{ | \tan{\left(\frac{7\pi}{6}\right)} &= \frac{\frac{-\sqrt{3}}{2}}{\frac{-1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3} | ||
& \cot{\left(\frac{ | & \cot{\left(\frac{7\pi}{6}\right)} &= \frac{\frac{-\sqrt{3}}{2}}{\frac{-1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 21:30, 1 September 2022